Hauling landfill leachate to offsite urban wastewater treatment plants is a way to achieve pollutant removal. However, the implementation of biological methods for the treatment of landfill leachate can be extremely challenging. This study aims to investigate the effect of blending wastewater with 3.5% and 5.5% of the industrial leachate from the Kalina pond (KPL) on the performance of sequencing batch reactor (SBR) and capacity of activated sludge microorganisms. The results showed that the removal efficiency of the chemical oxygen demand declined in the contaminated SBR from 100% to 69% and, subsequently, to 41% after the cotreatment with 3.5% and 5.5% of the pollutant. In parallel, the activities of the dehydrogenases and nonspecific esterases declined by 58% and 39%, and 79% and 81% after 32 days of the exposure of the SBR to 3.5% and 5.5% of the leachate, respectively. Furthermore, the presence of the KPL in the sewage affected the sludge microorganisms through a reduction in their functional capacity as well as a decrease in the percentages of the marker fatty acids for different microbial groups. A multifactorial analysis of the parameters relevant for the wastewater treatment process confirmed unambiguously the negative impact of the leachate on the operation, activity, and structure of the activated sludge.