ObjectiveTo determine whether regulatory variations in the heme oxygenase-1 (HO-1) promoter (GT)n dinucleotide repeat length could identify unique population genetic risks for neurocognitive impairment (NCI) in persons living with HIV (PLWH), we genotyped 528 neurocognitively assessed PLWH of European American and African American descent and linked genotypes to cognitive status.MethodsIn this cross-sectional study of PLWH (the CNS HIV Antiretroviral Therapy Effect Research cohort), we determined HO-1 (GT)n repeat lengths in 276 African Americans and 252 European Americans. Using validated criteria for HIV-associated NCI (HIV NCI), we found associations between allele length genotypes and HIV NCI and between genotypes and plasma markers of monocyte activation and inflammation. For comparison of HO-1 (GT)n allele frequencies with another population of African ancestry, we determined HO-1 (GT)n allele lengths in African PLWH from Botswana (n = 428).ResultsPLWH with short HO-1 (GT)n alleles had a lower risk for HIV NCI (OR = 0.63, 95% CI: 0.42–0.94). People of African ancestry had a lower prevalence of short alleles and higher prevalence of long alleles compared with European Americans, and in subgroup analyses, the protective effect of the short allele was observed in African Americans and not in European Americans.ConclusionsOur study identified the short HO-1 (GT)n allele as partially protective against developing HIV NCI. It further suggests that this clinical protective effect is particularly relevant in persons of African ancestry, where the lower prevalence of short HO-1 (GT)n alleles may limit induction of HO-1 expression in response to inflammation and oxidative stress. Therapeutic strategies that enhance HO-1 expression may decrease HIV-associated neuroinflammation and limit HIV NCI.