Purpose: This study was carried out to predict the growth period and fresh weight of sprouts grown in a cultivator designed to grow sprouts under optimal conditions. Methods: The temperature, light intensity, and amount of irrigation were controlled, and images of seed sprouts were acquired to predict the days of growth and weight from pixel counts of leaf area. Broccoli, clover, and radish sprouts were selected, and each sprout was cultivated in a 90-mm-diameter Petri dish under the same cultivating conditions. An image of each sprout was taken every 24 hours from the 4th day, and the whole cultivating period was 6 days, including 3 days in the dark. Images were processed by histogram inspection, binary images, image erosion, image dilation, and the overlay image process. The RGB range and ratio of leaves were adjusted to calculate the pixel counts for leaf area. Results: The correlation coefficients between the pixel count of leaf area and the growth period of sprouts were 0.91, 0.98, and 0.97 for broccoli, clover, and radish, respectively. Further, the correlation coefficients between the pixel count of leaf area and fresh weight were 0.90 for broccoli, 0.87 for clover, and 0.95 for radish. Conclusions: On the basis of these results, we suggest that the simple image acquisition system and processing algorithm can feasibly estimate the growth period and fresh weight of seed sprouts.