Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The aim of this study was to test Mohr method's performance characteristics and to check acceptability of test results during the routine salt analysis in the production phase of Çakıstes table olives. The method was validated using three fortified samples, i.e. salt solutions in water, cracked olive's brine and olive at three different levels of 3, 5 and 7% salt concentration at three different times. Overall recovery of the method was 107% for all three commodities over the validation range with a relative standard deviation of 5% (n=162). The regression coefficient (R 2) was found to be 0.998 in olive matrix. Typical limit of detection was 0.1% with the method.
The aim of this study was to test Mohr method's performance characteristics and to check acceptability of test results during the routine salt analysis in the production phase of Çakıstes table olives. The method was validated using three fortified samples, i.e. salt solutions in water, cracked olive's brine and olive at three different levels of 3, 5 and 7% salt concentration at three different times. Overall recovery of the method was 107% for all three commodities over the validation range with a relative standard deviation of 5% (n=162). The regression coefficient (R 2) was found to be 0.998 in olive matrix. Typical limit of detection was 0.1% with the method.
French PDO Nyons black table olives are produced according to a traditional slow spontaneous fermentation in brine. The manufacture and unique sensorial properties of these olives thus only rely on the autochthonous complex microbiota. This study aimed at unraveling the microbial communities and dynamics of Nyons olives during a 1.5-year-long spontaneous fermentation to determine the main microbial drivers and link microbial species to key metabolites. Fermentations were monitored at a local producer plant at regular time intervals for two harvests and two olive types (organically and conventionally grown) using culture-dependent and metabarcoding (ITS2 for fungi, V3-V4 region for bacteria) approaches. Olives and brines were also sampled for volatiles, organic acids and phenolic compounds. No major differences in microbiota composition were observed according to olive type or harvest period. Throughout the fermentation, yeasts were clearly the most dominant. ITS2 sequencing data revealed complex fungal diversity dominated by Citeromyces nyonsensis , Wickerhamomyces anomalus , Zygotorulaspora mrakii , Candida boidinii and Pichia membranifaciens species. Bacterial communities were dominated by the Celerinatantimonas genus, while lactic acid bacteria remained scarce. Clear shifts in microbial communities and biochemical profiles were observed during fermentation and, by correlating metabolites and microbiota changes, four different phases were distinguished. During the first 7 days, phase I, a fast decrease of filamentous fungal and bacterial populations was observed. Between days 21 and 120, phase II, W. anomalus and C. nyonsensis for fungi and Celerinatantimonas diazotrophica for bacteria dominated the fermentation and were linked to the pH decrease and citric acid production. Phase III, between 120 and 183 days, was characterized by an increase in acids and esters and correlated to increased abundances of Z. mrakii , P. membranifaciens and C. boidinii. During the last months of fermentation, phase IV, microbial communities were dominated by P. membranifaciens and C. boidinii . Both species were strongly correlated to an increase in fruity esters and alcohol abundances. Overall, this study provides an in-depth understanding about microbial species succession and how the microbiota shapes the final distinct olive characteristics. It also constitutes a first step to identify key drivers of this fermentation.
Table olives are one of the most widespread fermented foods in the Mediterranean area, presenting an exponential increase in global consumption in the latest years. As a fermented product, its microbiota consists of a complex ecosystem, the composition of which depends on a multitude of factors and affects the quality attributes of the final product. The swiftly developing and constantly evolving field of omics technologies is being applied to unravel the profile of the microbial ecosystem and enable a deeper understanding of the fermentation process. In particular, the use of amplicon metagenomics facilitates the thorough analysis of the microbiota involved as it encompasses both culturable and unculturable microorganisms. Volatilomics aims at the identification and quantification of the volatile metabolites formed during fermentation with a direct involvement in the safety and quality evaluation of the food product. The integration of metagenomic and volatilomic data, through the application of bioinformatics can enhance the understanding of the interplay between the microbial profile and volatilome, resulting in a more comprehensive view of the system. This review summarized the overall amplicon metagenomics and volatilomics analytical approaches, along with the currently available bioinformatics tools for the data analysis in the field of table olives. Emphasis is given to the integration of amplicon metagenomic and volatilomic data employed to characterize the diversity of microbial populations and reveal the relationships between them and the volatile compounds. The latter may provide an extensive view of the microbial community dynamics, which is key in table olive fermentation and the microbiota’s functional properties. The potentiality to evaluate their effect in shaping the quality and unique features of the final product is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.