Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, -lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk.
IMPORTANCEIn this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue.A ntibiotic resistance in bacteria has been recognized as one of the greatest threats to human health by the World Health Organization (1). Overuse and misuse of antibiotics contribute to the buildup of selective pressure aiding the proliferation of antibiotic-resistant bacteria (2, 3). While hospital environments are notorious for selecting for antibiotic-resistant bacteria, it is now becoming increasingly evident that overuse and misuse of antibiotics are also creating a selective pressure outside hospital settings. Studies over the last few years have shown the presence of antibiotics and of antibiotic-resistant bacteria in the broader environment, including water supplies and soil samples (4). This is indeed alarming as the high number of antibiotic-resistant bacteria in communities makes the treatment of community-acquired infections increasingly challenging (5, 6).Not surprisingly, water samples from communities that lack access to clean water contain high numbers of bacteria (7-9). While a high bacterial count in the water supply itself poses an increased health risk (10), the presence of antibiotic-resistant bacteria makes this risk even more serious. Lack of access to clean and safe water is a problem that is generally associated with developing countries; however, this is a reality as wel...