Marine turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 MYA, yet the genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remain largely unknown. Additionally, many populations have declined drastically due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for green (Chelonia mydas) and leatherback (Dermochelys coriacea) turtles, representing the two extant marine turtle families (MRCA ~60 MYA). Generally, these genomes are highly syntenic and homologous. Non-collinearity was associated with higher copy numbers of immune, zinc-finger, or olfactory receptor (OR) genes in green turtles. Gene family analyses suggested that ORs related to waterborne odorants have expanded in green turtles and contracted in leatherbacks, which may underlie immunological and sensory adaptations assisting navigation and occupancy of neritic versus pelagic environments, and diet specialization. Microchromosomes showed reduced collinearity, and greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, demographic history and diversity analyses showed stark contrasts between species, indicating that leatherback turtles have had a low yet stable effective population size, extremely low diversity when compared to other reptiles, and a higher proportion of deleterious variants, reinforcing concern over the persistence of this species under future climate scenarios. These highly contiguous genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.