Geographical mapping has revolutionized data analysis with the help of analytical tools in the fields of social and economic studies, whereby representing statistical research variables of interest as geographic characteristics presents visual insights. This study employed the QGIS mapping tool to create predicted choropleth maps of Visegrád Group countries based on crime rate. The forecast of the crime rate was generated by time series analysis using the ARIMA (autoregressive integrated moving averages) model in SPSS. The literature suggests that many variables influence crime rates, including unemployment. There is always a need for the integration of widespread data insights into unified analyses and/or platforms. For that reason, we have taken the unemployment rate as a predictor series to predict the future rates of crime in a comparative setting. This study can be extended to several other predictors, broadening the scope of the findings. Predictive data-based choropleth maps contribute to informed decision making and proactive resource allocation in public safety and security administration, including police patrol operations. This study addresses how effectively we can utilize raw crime rate statistics in time series forecasting. Moreover, a visual assessment of safety and security situations using ARIMA models in SPSS based on predictor time-series data was performed, resulting in predictive crime mapping.