Wilms tumor (WT) is a genetically heterogeneous childhood kidney tumor. Several genetic alterations have been identified in WT patients, including inactivating mutations in WT1 and loss of heterozygosity or loss of imprinting at 11p15, which results in biallelic expression of IGF2. However, the mechanisms by which one or a combination of genetic alterations results in tumorigenesis has remained challenging to determine, given the lack of a mouse model of WT. Here, we engineered mice to sustain mosaic, somatic ablation of Wt1 and constitutional Igf2 upregulation, mimicking a subset of human tumors. Mice with this combination of genetic alterations developed tumors at an early age. Mechanistically, Wt1 ablation blocked mesenchyme differentiation, and increased Igf2 expression upregulated ERK1/2 phosphorylation. Importantly, a subset of human tumors similarly displayed upregulation of ERK1/2 phosphorylation, which suggests ERK signaling might contribute to WT development. Thus, we have generated a biologically relevant mouse model of WT and defined one combination of driver alterations for WT. This mouse model will provide a powerful tool to study the biology of WT initiation and progression and to investigate therapeutic strategies for cancers with IGF pathway dysregulation.
IntroductionWilms tumor (WT) is a childhood kidney tumor that is thought to arise from undifferentiated metanephric mesenchyme. WT is genetically heterogeneous. Mutations that occur in tumors include inactivation of WT1 (~20% of tumors), somatic stabilizing CTNNB1 mutations (~15%), somatic deletion of WTX (~20%), and p53 mutations (~5%) that occur specifically in the subset of anaplastic WT (1-5). Overall, only one-third of tumors have mutations in 1 or more of these 4 genes (6). Additionally, loss of heterozygosity (LOH) or loss of imprinting (LOI) at the chromosomal region 11p15, which harbors a cluster of imprinted genes, is observed in approximately 70% of tumors (7,8), resulting in biallelic expression of IGF2. However, the mechanism by which one or a combination of alterations results in tumorigenesis is not known. Children heterozygous for germline WT1 mutations are predisposed to WT, and these tumors have invariably sustained mutation of the wild-type WT1 allele. However, inactivation of WT1 is also observed in premalignant lesions (9), which suggests that one or more additional, rate-limiting genetic alterations is required for progression to a malignant phenotype.The cellular pathways dysregulated in WTs as a result of WT1 ablation or IGF2 upregulation are unknown, and identifying such pathways in human tumors is challenging because of the genetic heterogeneity of the disease and the biologic complexity of primary human tumors. While animal models can be powerful tools for dissecting the biology of human tumors, the development of a mouse model for WT has been elusive. Wt1 -/-mice lack kidneys