2015
DOI: 10.2139/ssrn.2555111
|View full text |Cite
|
Sign up to set email alerts
|

Microeconomic Models with Latent Variables: Applications of Measurement Error Models in Empirical Industrial Organization and Labor Economics

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 36 publications
0
7
0
Order By: Relevance
“…While we focus on auction models in this paper, the RSD ordering can be useful in other applications of measurement error models. See Hu (2015) for a recent survey on applications in empirical industrial organization and labor economics. Moreover, although we study only discrete unobserved heterogeneity in this paper, the RSD ordering can also be applied in the continuous case.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…While we focus on auction models in this paper, the RSD ordering can be useful in other applications of measurement error models. See Hu (2015) for a recent survey on applications in empirical industrial organization and labor economics. Moreover, although we study only discrete unobserved heterogeneity in this paper, the RSD ordering can also be applied in the continuous case.…”
Section: Resultsmentioning
confidence: 99%
“…Applying the results in Hu (2008), Hu, McAdams, and Shum (2013) obtain their key identification equation:…”
Section: Identification Of Component Bid Distributionsmentioning
confidence: 99%
See 2 more Smart Citations
“…The class of panel data models introduced above satisfies conditional independence restrictions, as period‐specific outcomes Yi1,...,YitaliciT are mutually independent conditional on exogenous covariates and individual heterogeneity Xi,ηi. A body of work, initially developed in the context of nonlinear measurement error models, has established nonparametric identification results in related models under conditional independence restrictions; see Hu () for a recent survey. Here we show how the result in Hu and Schennach () can be used to show nonparametric identification.…”
Section: Quantile Models For Panel Datamentioning
confidence: 99%