Atorvastatin calcium (ATV) is a well-known anti-hyperlipidemic drug currently being recognized for possessing an anti-inflammatory effect. Introducing it as a novel remedy for periodontitis treatment necessitates developing a syringeable modified delivery system capable of targeting inflammation within the periodontal pockets. Thus, a 3
3
Box-Behnken design was used to generate eugenol enriched PEGylated cubosomes. Based on the desirability function, the optimized formulation (OEEPC) was selected exhibiting a solubilization efficiency (SE%) of 97.71 ± 0.49%, particle size (PS) of 135.20 ± 1.11 nm, polydispersity index (PDI) of 0.09 ± 0.006, zeta potential (ZP) of −28.30 ± 1.84 mV and showing a sustained drug release over 12 h. It displayed a cubic structure under the transmission electron microscope, furthermore, it was stable upon storage for up to 30 days. Hence, it was loaded into an optimum syringeable in-situ gel (ISG) which displayed the desired periodontal gelation temperature (34 ± 0.70 °C) and an adequate gelation time (46 ± 2.82 sec), it also released approximately 75% of the drug within 72 h. Clinical evaluation of the ISG showed a promising percentage reduction of about 58.33% in probing depth, 90% in the bleeding index, 81.81% in the plaque index, and 70.21% in gingival levels of transforming growth factor–β1. This proved that the formulated syringeable intra-pocket delivery system of ATV is an efficient candidate for diminishing inflammation in periodontitis.