Among the most crucial rheological characteristics of blood cells within the vasculature is their ability to undergo the shape change (i.e., deform). The significance of cellular deformability is readily apparent based solely on the disparate mean size of human erythrocytes (~8 μm) and leukocytes (10-25 μm) compared to the minimum luminal size of capillaries (4-5 μm) and splenic interendothelial clefts (0.5-1.0 μm) they must transit. Changes in the deformability of either cell will result in their premature mechanical clearance as well as an enhanced possibility of intravascular lysis. In this chapter, we will demonstrate how microfluidic devices can be used to examine the vascular deformability of erythrocytes and agranular leukocytes. Moreover, we will compare microfluidic assays with previous studies utilizing micropipettes, ektacytometry and micropore cell transit times. As will be discussed, microfluidics-based devices offer a low-cost, high throughput alternative to these previous, and now rather ancient, technologies.Current and Future Aspects of Nanomedicine 2 and prone to mechanical interaction with the endothelial cells lining the blood vessels. WBC also have adhesion molecules on their membrane and, if appropriate signals (e.g., inflammation) are present, they actively roll on the endothelial cells prior to attachment and extravasation (Figure 1A,B). Moreover, the viscosity of blood is also variable and is a function of, primarily, red blood cell (RBC) number and flow rate. At high RBC counts and high flow rates, blood is highly viscous while at low RBC counts and low flow rates (capillaries), blood viscosity is greatly reduced. Moreover, as shown in Figure 1C, the rheological stress is further exacerbated by the biomechanical stresses induced by the extreme disparity in the size of RBC (~8 μm) and WBC (10-25 μm) to the minimum diameter of the vascular Assessing the Vascular Deformability of Erythrocytes and Leukocytes: From Micropipettes… DOI: http://dx.doi.org/10.5772/intechopen.90131
Conflict of interestThe University of British Columbia and HM have pending patent applications relating to the described microfluidic devices.