The use of micromixers and catalytically active nanocomposites can be an attractive alternative for the treatment of wastewaters from the textile industry, due to their high activity, low consumption of such nanocomposites, short reaction times and the possibility to work under continuous operation. In this study, 6 different designs of micromixers were modeled and evaluated for the treatment of wastewaters. Velocity profiles, pressure drops, and flows were analyzed and compared for the different devices under the same mixing conditions. In addition, Life cycle assessment (LCA) methodology was applied to determine their performance in terms of environmental impact. Considering the high environmental impact of water sources contaminated by dyes from the textile industry, it becomes critically important to determine when the proposed micromixers are a suitable alternative for their remediation. The LCA and operational efficiency studies results shown here provide a route for the design of novel wastewater treatment systems by coupling low-cost and high-performance micromixers.