The science and phenomena that become important when fluid-flow is confined in microfluidic channels are initially discussed. Then, technologies for channel fabrication (ranging from photolithography and chemical etching, to imprinting, and to 3D-printing) are reviewed. The reference list is extensive and (within each topic) it is arranged chronologically. Examples (with emphasis on those from the authors' laboratory) are highlighted. Among them, they involve plasma miniaturization via microplasma formation inside micro-fluidic (and in some cases millifluidic) channels fabricated on 2D and 3D-chips. Questions addressed include: How small plasmas can be made? What defines their fundamental size-limit? How small analytical plasmas should be made? And what is their ignition voltage? The discussion then continues with the science, technology and applications of nanofluidics. The conclusions include predictions on potential future development of portable instruments employing either micro or nanofluidic channels. Such portable (or mobile) instruments are expected to be controlled by a smartphone; to have (some) energy autonomy; to employ Artificial Intelligence and Deep Learning, and to have wireless connectivity for their inclusion in the Internet-of-Things (IoT). In essence, those that can be used for chemical analysis in the field for "bringing part of the lab to the sample" types of applications.