The thermoelastic behavior of bi-directional fibrous composites will be studied through the use of a finite element-based micromechanical model. The model is used to study the effect of the crossing angle of the fibers on the composite's coefficient of thermal expansion (CTE) and the residual thermal stresses that develop after a temperature change. The effect of the fiber volume fraction (V f ) on the same results is also studied. For anisotropic materials, one can see that in addition to normal strains, shear strains will also be developed due to temperature change. This method will lend itself to evaluate the coefficients of thermal expansions not only due to normal expansion, but also due to shear expansion for composites with no principal directions. In this micromechanical model, parallelepiped unit cells incorporating the fibers at different cross angles are created to represent the periodic microstructure of the angular bi-directional composite. The volume averaged stresses per unit temperature of the individual constituents are used to study the residual thermal stresses that develop. Two different sets of materials are used to test this model. Results show that when the fiber's cross angle is not 0 o or 90 o , shear strains are created. Also, residual stresses in the unit cell are functions of the cross angle between the fibers.