1994
DOI: 10.1016/0167-6636(94)90051-5
|View full text |Cite
|
Sign up to set email alerts
|

Micromechanics of shear banding

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
39
0
3

Year Published

2001
2001
2014
2014

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 64 publications
(44 citation statements)
references
References 15 publications
2
39
0
3
Order By: Relevance
“…Our recent study 8 on the solid heavy-metal azides within the framework of periodic DFT has also confirmed that there is the relationship between the band gap and impact sensitivity. In several papers, [22][23][24][25] Gilman has emphasized that the HOMO-LUMO (highest occupied molecular orbital to lowest unoccupied molecular orbital) gap closure in molecules suffering from shear strain promotes the HOMO-LUMO transition. Further reports 26,27 on the excitonic mechanism of detonation initiation show that the pressure inside the impact wave front reduces the band gap between valence and conducting bands and promotes the HOMO-LUMO transition within a molecule.…”
Section: Understanding Experimental Resultsmentioning
confidence: 99%
“…Our recent study 8 on the solid heavy-metal azides within the framework of periodic DFT has also confirmed that there is the relationship between the band gap and impact sensitivity. In several papers, [22][23][24][25] Gilman has emphasized that the HOMO-LUMO (highest occupied molecular orbital to lowest unoccupied molecular orbital) gap closure in molecules suffering from shear strain promotes the HOMO-LUMO transition. Further reports 26,27 on the excitonic mechanism of detonation initiation show that the pressure inside the impact wave front reduces the band gap between valence and conducting bands and promotes the HOMO-LUMO transition within a molecule.…”
Section: Understanding Experimental Resultsmentioning
confidence: 99%
“…Так как коэффициент D  связан с перерас-пределением напряжений, то характерная скорость этого процесса V  V S  10 3 м/с. В этом случае R  l   10 3 м, что соответствует мезоско-пическому масштабу неоднородности пластической деформации [3,[148][149][150][151].…”
Section: о физическом смысле коэффициентовunclassified
“…Извест-ные наблюдения Чернова [2] показали, что при пластическом тече-нии материал разделяется на части, причем вся деформация оказы-вается сосредоточенной (локализованной) на границах между таки-ми частями, а они сами остаются практически недеформированны-ми. Проведенные в последние годы экспериментальные исследова-ния локализации пластического течения (см., например, [3]) под-твердили многообразие форм этого явления и его важную роль на всех этапах пластического течения. Появились доказательства того, что пластическая деформация протекает неоднородно, начиная с предела текучести и заканчивая формированием шейки и разруше-нием [4].…”
Section: Introductionunclassified
“…Thus, the processes in question have virtually the same activation volumes; this suggests that dislocation motion mechanisms operate in both domains. The activation volume is determined by the dislocation structure of the block boundaries; specific activation processes occurring in this domain involve the motion of dislocations overcoming the barriers [7]. In this case, the rate-limiting factor for steady-state creep is the velocity of dislocation motion.…”
Section: Experimental Procedures and Resultsmentioning
confidence: 99%