Novel stretchable conducting films were prepared by depositing gold layers onto polymer nano-composites substrates formed by in-situ crosslinking of polydimethylsiloxane (PDMS) in the presence of multiwall carbon nanotubes (MWNT). The MWNT content interferes with the PDMS cure reaction giving variations in thermal degradation, solvent swelling, mechanical and electrical properties. Tensile cycling experiments were carried out on the gold-coated PDMS and nano-composite substrates SEM analysis and electrical measurements demonstrated that the crack widening and increased electrical resistance observed during strain cycling were reversible. The inclusion of 8 % MWNT into PDMS brought more micro-cracking in the gold layer yet reduced the electrical resistance of the gold-coated samples by 172X at 5 % strain, 38X at 10 % strain and 19X at 20 %. Hence, this improvement in conduction is attributed to assisted-conduction through the MWNT loaded substrate. This mechanism results in a more stable and reproducible electrical behaviour, making electrical conduction less critically dependent on defects in the gold layer.