Scanning electrochemical microscopy (SECM) is developed as a powerful approach to electrochemical characterization of individual one-dimensional (1D) nanostructures under unbiased conditions. 1D nanostructures comprise high-aspect-ratio materials with both nanoscale and macroscale dimensions such as nanowires, nanotubes, nanobelts, and nanobands. Finite element simulations demonstrate that the feedback current at a disk-shaped ultramicroelectrode tip positioned above an unbiased nanoband, as prepared on an insulating substrate, is sensitive to finite dimensions of the band, i.e., micrometer length, nanometer width, and nanometer height from the insulating surface. The electron-transfer rate of a redox mediator at the nanoband surface depends not only on the intrinsic rate but also on the open-circuit potential of the nanoband, which is determined by the dimensions of the nanoband as well as the tip inner and outer radii, and tip-substrate distance. The theoretical predictions are confirmed experimentally by employing Au nanobands as fabricated on a SiO 2 surface by electron-beam lithography, thereby yielding well defined dimensions of 100 or 500 nm in width, 47 nm in height, and 50 μm in length. A 100 nm-wide nanoband can be detected by SECM imaging with ∼2 μm-diameter tips although the tip feedback current is compromised by finite electron-transfer kinetics for Ru(NH 3 ) 6 3+ at the nanoband surface.