Cenozoic atmospheric circulation, climatic changes, sedimentation and weathering over the Indian sub-continent were mainly influenced by the northward drift of the Indian Plate, the shrinking Paratethys, India-Asia collision and the rise of the Himalayas. This study is aimed at exploring the fluvial sedimentary record of the north-west part of the Himalayan Foreland Basin to interpret weathering and pedogenesis during early Oligocene to Mid-Miocene time. Palaeopedological investigation of a 3.1 km thick succession from Kangra sub-basin of the Himalayan Foreland Basin shows that the lower 2 km part of the succession is characterized by the red (10R hue) and the upper 1.1 km part of the succession by the yellow (2.5Y hue) palaeosols with varying intensity of weathering and pedogenesis. The association of sedimentary rocks and pedogenic expression in palaeosols indicate four (Type-A to Type-D) pedofacies in the entire Oligocene-Miocene succession. The pedofacies are defined by a decrease in the intensity of palaeopedogenic development from strongly-developed palaeopedofeatures in Type-A, moderately-developed palaeopedofeatures in Type-B, weakly-developed palaeopedofeatures in Type-C and to the only incipient stage of palaeopedogenesis in Type-D pedofacies. The palaeolatitudinal shift during the convergence of the Indian Plate played a major role in weathering and palaeopedogenesis with the inception of seasonality during the early Oligocene, which is demonstrated by the formation of the red palaeosols with pedogenic CaCO 3 and vertic features in tropical conditions. The transition to yellow palaeosols at about 20 Ma is marked by increased humidity, rapid aggradation, pronounced uplift and enhanced erosion of the hinterland. These yellow palaeosols are characterized by the abundance of weakly-developed Bw and Bss horizons, pure clay pedofeatures and absence of any pedogenic CaCO 3 during short pedogenic intervals in subtropical conditions.