Abstract-Individual dislocations in an ultra-pure GaAs epilayer are investigated with spatially and spectrally resolved photoluminescence imaging at 5 K. We find that some dislocations act as strong non-radiative recombination centers, while others are efficient radiative recombination centers. We characterize luminescence bands in GaAs due to dislocations, stacking faults, and pairs of stacking faults. These results indicate that lowtemperature, spatially-resolved photoluminescence imaging can be a powerful tool for identifying luminescence bands of extended defects. This mapping could then be used to identify extended defects in other GaAs samples solely based on low-temperature photoluminescence spectra.