Marginal sea ecosystems, such as the Baltic Sea, are severely affected by anthropogenic pressures, such as climate warming, pollution, and eutrophication, which increased in the course of the past century. Biodiversity monitoring data and assessment of environmental status in such systems have typically been carried out only for the past few decades, if at all, and knowledge on pre-impact stability and good ecological status is limited. An extension of monitoring time series can potentially be achieved through analyses of paleoecological records, e.g. for phytoplankton, which form the base of the food web and are highly susceptible to environmental changes. Within the phytoplankton community, dinoflagellates and diatoms play a significant role as primary producers, and their relative dominance in the spring bloom, calculated as Dia/Dino index, is used as an indicator for the environmental status of the Baltic Sea. To extend time series on the dominance patterns and include non-fossilized dinoflagellates, we here establish a simple droplet digital PCR (ddPCR) reaction on ancient DNA from sediment cores that decodes phytoplankton dynamics. We focus on two common spring bloom species, the diatom Skeletonema marinoi and the dinoflagellate Apocalathium malmogiense, for which we evaluate a DNA based dominance index. It performs very well in comparison to DNA metabarcoding and modern monitoring and can elucidate past species dominance across the past century in three basins of the Baltic and across millennia in two of these basins. For the past century, we see a dominance shift already starting before the mid-20th century in two of the Baltic Sea basins, thus substantially predating current monitoring programs. Shifts are only partly coeval among the cores and the index shows different degrees of stability. This pattern is confirmed across millennia, where a long-term stable relationship between the diatom and the dinoflagellate is observed in the Eastern Gotland Basin, while data from the Gulf of Finland bear testimony to a much more unstable relationship. This confirms that good ecological status based on the dominance pattern of diatoms and dinoflagellates must be established locally and exemplifies how sediment core DNA can be employed to extend monitoring data.