Microplastic pollution is omnipresenthaving been found in our land, air, food, and water. Over the last two decades, both identifying microplastics and sleuthing their sources has been a major research focus. Moving forward, the next goal should be remediation. Although removing microplastics from the environment is impractical, developing methods that prevent their release into the environment is essential. Herein, we report an approach for removing microplastics from water using a pressuresensitive adhesive. Specifically, we demonstrate that shaking zirconium silicate beads coated with poly(2-ethylhexyl acrylate) in aqueous suspensions containing polystyrene microplastics (10 μm) can remove up to 99% of the microplastics within 5 min. We show that the adhesive molar mass (ranging from 93−950 kg/ mol) is invariant with respect to removal efficiency at 5 min, as quantified by flow cytometry. Preliminary results suggest these adhesives can bind other microplastics as well, including nonpolar polymers (e.g., polyethylene, micronized rubber) and polar polymers (e.g., nylon, polyethylene terephthalate). Overall, this proof-of-concept study demonstrates a promising approach for remediating microplastics from aqueous suspensions using adhesives.