Contamination with plastic debris has been recognized as one of today's major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement information from measurements and will play an important role in the prospective risk assessment of plastic debris. We review the present knowledge with respect to fate and transport modeling of plastic debris in freshwater catchment areas, focusing especially on nano-and microplastics. Starting with a brief overview of theory and models for nonplastic particles, we discuss plastic-specific properties, processes, and existing mass-balance-, multimedia-, and spatiotemporally explicit fate models. We find that generally many theoretical and conceptual approaches from This chapter has been externally peer reviewed.The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-61615-5_14. models developed earlier for other types of (low density) particles apply also to plastic debris. A unique feature of plastic debris, however, is its combination of high persistence, low density, and extremely wide size distribution, ranging from the nanometer to the >cm scale. This causes the system behavior of plastic debris to show a far wider variety than most other materials or chemicals. We provide recommendations for further development of these models and implications and guidance for how fate and transport models can be used in a framework for the tiered risk assessment of plastic debris.