Kraft lignin (KL) is a sustainable carbon-based substance with a potential use in photovoltaic materials. However, its conductivity is low, but it can be improved via incorporation with a conductive polymer, such as poly(3,4-ethylene dioxythiophene) (PEDOT): poly-(styrenesulfonate) (PSS). This study examines the factors affecting the interaction of KL and PEDOT:PSS (PS) in a solution state using a quartz crystal microbalance with dissipation (QCM-D) and a stagnation point refractometer (SPAR). The results confirmed that aqueous environments, e.g., pH and ionic strengths, considerably affected particle size and zeta potential of KL and PS due to protonation, deprotonation, particle aggregation, and charge screening. The polymers exhibited the largest adsorbed mass and thickness at pH 6 and 10 mM NaCl on a solid surface, which was attributed to the relatively linear structure of PEDOT chains, exposing more adsorptive sites for interaction with KL. A 10 mM NaCl concentration facilitated the screening of charges on PS and KL surfaces, diminishing repulsive forces and enabling hydrophobic and cationic-π interaction, which led to increased adsorption. Contact angle and SEM investigations of the adsorbed layer revealed the water contact angle increasing and the morphology changing from a smoother layer to a porous surface, providing further evidence of adsorption. Furthermore, the conductivity was improved by the introduction of a PS adlayer on ITO glass when it was sandwiched between KL adsorbed layers. These findings provide insight into KL and PS interaction and suggest that KL can be used with PS for conductive materials, such as photovoltaics, imparting the waterproofness of the films.