The current study aimed to assess the regulatory mechanism of microRNA-150-5p (miR-150-5p) in the pathogenesis of gastric cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of miR-150-5p in gastric cancer tissues and cell lines, which was revealed to be highly expressed in each. In addition, the expression of miR-150-5p was associated with advanced gastric cancer and lymph node metastasis. The current study then hypothesized that SRC kinase signaling inhibitor 1 (SRCIN1) was the target gene of miR-150-5p, a theory that was confirmed via a dual luciferase reporter gene assay. RT-qPCR and western blotting were then performed to verify the expression of SRCIN1 in gastric cancer tissues and cell lines. The results demonstrated that SRCIN1 was lowly expressed in gastric cancer tissues and cells. To assess the effect of miR-150-5p on gastric cancer cells, experiments were conducted with BGC-823 cells transfected with a miR-150-5p inhibitor or a miR-150-5p inhibitor+SRCIN1-small interfering (si)RNA respectively. A cell counting kit-8 assay and flow cytometry were also used to assess cell viability and apoptosis, respectively. Western blotting and RT-qPCR were further used to measure the expression of specific markers of epithelial mesenchymal transition (EMT), including epithelial cell markers (E-cadherin and zona occluding-1) and interstitial cell markers (vimentin, N-cadherin and β-catenin). The results revealed that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis, decreased the expression of interstitial cell markers and increased epithelial cell marker expression. However, all effects of the miR-150-5p inhibitor were reversed following SRCIN1-siRNA treatment. In summary, the current study indicated that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis and inhibited gastric cancer cell EMT by targeting SRCIN1.