Current studies suggest that some microRNAs (miRNAs) are associated with prognosis in clear cell renal cell carcinoma (ccRCC). In this paper, we aimed to identify a miRNAs signature to improve prognostic prediction for ccRCC patients.Using ccRCC RNA-Seq data of The Cancer Genome Atlas (TCGA) database, we identified 177 differentially expressed miRNAs between ccRCC and paracancerous tissue. Then all the ccRCC tumor samples were divided into training set and validation set randomly. Three-miRNA signature including miR130b, miR-18a, and miR-223 were constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression model in training set. According to optimal cut-off value of three-miRNA signature risk score, all the patients could be classified into high-risk group and low-risk group significantly. Survival of patients was significantly different between two groups (hazard ratio, 5.58, 95% confidence interval, 3.17-9.80; P < 0.0001), and three-miRNA signature performed favorably prognostic and predictive accuracy. The results were further validated in the validation set and total set. Multivariate Cox regression analyses and subgroup analyses showed that three-miRNA signature was an independent prognostic factor. Two nomograms that integrated three-miRNA signature and three clinicopathological risk factors were constructed to predict overall survival and disease-free survival after surgery for ccRCC patients. Functional enrichment analysis showed the possible roles of three-miRNA signature in some cancer-associated biological processes and pathways. In conclusion, we developed a novel three-miRNA signature that performed reliable prognostic for patient survival with ccRCC, it might facilitate ccRCC patients counseling and individualize management. K E Y W O R D S clear cell renal cell cancer, least absolute shrinkage and selection operator regression, microRNAs J Cell Biochem. 2019;120:13751-13764.wileyonlinelibrary.com/journal/jcb