Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which the pathophysiological mechanisms of motor neuron loss are not precisely clarified. Environmental and epigenetic mechanisms such as microRNAs (miRNAs) could have a role in disease progression. We studied the expression pattern of miRNAs in ALS serum from 60 patients and 29 healthy controls. We also analyzed how deregulated miRNAs found in serum affected cellular pathways such as apoptosis, autophagy and mitochondrial physiology in SH-SY5Y cells. We found that miR-335-5p was downregulated in ALS serum. SH-SY5Y cells were transfected with a specific inhibitor of miR-335-5p and showed abnormal mitochondrial morphology, with an increment of reactive species of oxygen and superoxide dismutase activity. Pro-apoptotic caspases-3 and 7 also showed an increased activity in transfected cells. The downregulation of miR-335-5p, which has an effect on mitophagy, autophagy and apoptosis in SH-SY5Y neuronal cells could have a role in the motor neuron loss observed in ALS. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. It is classically characterized by weakness and atrophy due to loss of lower motor neurons in the brainstem and spinal cord and loss of upper motor neurons in the motor cortex 1. Degeneration, however, is now considered to be more widespread and not restricted to the motor system. Up to 50% of patients show evidence of behavioral and cognitive dysfunction, suggesting pathologic changes involving the frontal and temporal cortex, and sometimes fulfilling diagnostic criteria of frontotemporal dementia (FTD). These disorders are now considered to be manifestations within the clinicopathological spectrum of an underlying mechanism of neurodegeneration 2,3. The molecular pathogenic mechanism of ALS onset and progression is not completely known. Environmental factors have been described as potential contributors to neurodegeneration and ALS progression, but none have proven to be causative 4,5. Mutations in more than 25 genes have been implicated in familial (fALS) and sporadic ALS (sALS) forms 6 , suggesting a wide heterogeneity in the molecular bases of the disease. Several ALS-causing genes encode proteins involved in RNA metabolism processes, such as RNA transcription, splicing, mRNA transport and microRNAs (miRNAs) biogenesis 7. Dysfunction of these mechanisms is not exclusive and may lead to diverse cellular abnormalities. Epigenetic mechanisms, such as miRNAs, could regulate the expression of genes involved in common cellular pathways that are disrupted in ALS and therefore have an impact on ALS phenotype 8. MiRNAs are small, non-coding RNA molecules of approximately 22 nucleotides that regulate gene