Objective: Rheumatoid arthritis (RA) is the most frequently occurring inflammatory arthritis. The present study was performed to characterize the role of microRNA-101-3p (miR-101-3p) and prostaglandin-endoperoxide synthase 2 (PTGS2) in inflammation and biological activities of fibroblast-like synoviocytes (FLSs) in RA.
Methods: Initially, miR-101-3p and PTGS2 expression in RA tissues of RA patients and RA rats was detected by qRT-PCR and Western blot analysis. Rat model of type II collagen-induced arthritis (CIA) was adopted to simulate RA, followed by injection of miR-101-3p mimics or siRNA against PTGS2. Next, the apoptosis in synovial tissue and the levels of tumor necrosis factor (TNF)-α, IL-1β and IL-6 were identified. Subsequently, FLSs in RA (RA-FLSs) were isolated, after which in vitro experiments were conducted to analyze cell proliferation, apoptosis, migration and invasion upon treatment of up-regulated miR-101-3p and silenced PTGS2. Furthermore, the relationship of miR-101-3p and PTGS2 was determined by bioinformatics prediction and luciferase activity assay.
Results: We identified poorly expressed miR-101-3p and highly expressed PTGS2 in synovial tissues of RA patients and RA rats, which showed reduced synoviocyte apoptosis and enhanced inflammation. In response to miR-101-3p mimics and si-PTGS2, the RA-FLSs were observed with attenuated cell proliferation, migration and invasion, corresponding to promoted apoptosis. Down-regulation of PTGS2 could rescue the effect of inhibited miR-101-3p in synovial injury and phenotypic changes of FLS in RA rats. Notably, miR-101-3p was found to negatively regulate PTGS2.
Conclusion: Taken together, miR-101-3p reduces the joint swelling and arthritis index in RA rats by down-regulating PTGS2, as evidenced by inhibited FLS proliferation and inflammation.