Breast cancer, more prevalent in women, often arises due to abnormalities in the MRN-checkpoint sensor genes (MRN-CSG), responsible for DNA damage detection and repair. Abnormality in this complex is due to the suppression of various effectors such as siRNAs, miRNAs, and transcriptional factors responsible for breast tumor progression. This study analyzed breast tumor samples (n = 60) and identified four common miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) out of 12, exploring their interactions with MRN-CSG. The 3D structures of these miRNA-MRN-CSG complexes displayed strong thermodynamic stability. Screening 7711 natural compounds resulted in two natural compounds (F0870–0001 and F0922–0471) with the lowest ligand binding energies (ΔG = −8.4 to−11.6 kcal/mol), targeting two common miRNAs. Docking results showed that one natural compound (PubChem id-5 281 614) bound to all MRN-CSG components (ΔG = −6.2 to −7.3 kcal/mol), while F6782–0723 bound only to RAD50 and NBN. These compounds exhibited minimal dissociation constants (Kd and Ki) and thermodynamically stable minimum free energy (MMGBSA) values. Molecular dynamics simulations indicated highly stable natural compound-MRN-CSG complexes, with consistent RMSD, RMSF, and strong residual correlation. These top-selected compounds displayed robust intermolecular H-bonding, low carcinogenicity, low toxicity, and drug-like properties. Consequently, these compounds hold promise for regulating miRNA and MRN-CSG DNA repair mechanisms in breast cancer therapy.
Insight Box: This study investigated breast tumor samples (n = 60) and identified four miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) that interact with MRN-checkpoint sensor genes (MRN-CSG), crucial for DNA damage repair. Screening 7711 natural compounds highlighted two compounds (F0870–0001 and F0922–0471) with the lowest binding energies (ΔG = −8.4 to −11.6 kcal/mol), targeting two common miRNAs (miR-1-3p and miR-34a-5p). Another natural compound (PubChem id-5 281 614, ΔG = −6.2 to −7.3 kcal/mol) bound all MRN-CSG components, while F6782–0723 targeted RAD50 and NBN. These compounds showed strong binding stability, favorable MMGBSA values, and minimal dissociation constants. Molecular dynamics simulations confirmed the stability and drug-like properties of these compounds, indicating their potential in breast cancer therapy by modulating miRNA and MRN-CSG DNA repair mechanisms.