Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 downregulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 downregulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens. Improving meat quality has long been a goal of broiler breeding programs, especially for Chinese native breeds 1,2. However, meat quality is difficult to define because it is a complex trait influenced by numerous factors 3. As the main tissue determining meat quality, skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, varying in their biochemical and structural characteristics. Previous studies have found that different types of muscle fibers can influence meat quality traits, including meat color, tenderness, water-holding capacity, juiciness, and flavor 4,5. In chickens, myofiber can be divided into red and white fibers, which are referred to as oxidative (type I and IIA) and glycolytic fibers (type IIB), respectively. Oxidative fibers exhibit slow contractility and oxidative metabolism based on mitochondrial oxidative phosphorylation, whereas glycolytic fibers have fast contractility and glycolytic metabolism 6,7. Although the differences between various muscle fiber types in physiology and functionality have been well studied, the molecular regulation of their specification and maintenance in chickens remains largely unknown 8,9. miRNAs are highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level in most biological processes. Emerging evidence has demonstrated that miRNAs are involved in