age-matched control serum. In these exploratory studies with rat and human tissues, we tested three hypotheses, 1) miRNA-seq profiles would identify TBI at all acute and chronic post-injury intervals, 2) miRNA-seq profiles would discriminate between focal and diffuse TBI and 3) serum miRNA-seq would reveal potential miRNA markers of neuropsychiatric and neurodegenerative sequelae. Methods Study design. The miRNA-seq and data analyses workflow is shown in Fig. 1A (rat studies) and Fig. 2A (human studies). Detailed methods, including rat surgical procedures, are described in Supplementary Materials and are summarized below. All procedures were done under a protocol (No. 1312056A) approved by the University of Texas Medical Branch at Galveston's Institutional Animal Care and Use Committee. All procedures performed as part of this study were performed in accordance with institutional, state, and U.S. federal guidelines and regulations. In the rat studies, for each post-injury interval, we sequenced four TBI and four sham-control hippocampi, thus 56 rats were used for miRNA-seq analysis. In the human studies, we sequenced 51 serum samples (six acute and six aged controls, 33 acute TBI representing 24, 48, 96 h post-injury, six chronic TBI [2-32 years post-injury]). Demographic characteristics are shown in Table 1. Rat hippocampus and serum isolation and PCR array analysis. Total RNA from rat hippocampal tissue was extracted and purified using Ribopure (Ambion) as in Boone and Weisz et al. 9. Serum from rats subjected to FPI and CCI was used for miRNA isolation and PCR array analysis as described in Supplementary Methods.