BackgroundThe most common malignancy is breast cancer, among women in the world. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Cancer associated fibroblasts (CAFs) play a critical role to support tumor cells in all aspect of cancer development such as cell proliferation, migration and angiogenesis. MiRNAs are one of the regulatory molecules that regulate the genes contributing to cell growth, differentiation, migration and apoptosis. Based on other studies, miR-200c, as a tumor suppressor, has low expression levels in cancer associated fibroblasts. In this investigation, effect of miR-200c overexpression was evaluated on proliferation, migration and angiogenesis of TNBC cells. MethodsThe fibroblasts were isolated from normal and cancer breast tissue. MiR-200c expression was assessed using RT PCR in cancer associated fibroblasts (CAFs) and normal fibrobalasts (NFs) and then, were transfected using miR-200c. Finally, its effect on proliferation, migration and angiogenesis of TNBC cells were evaluated. ResultsOur results confirm that in presence of miR-200c transfected fibroblasts, the proliferation, migration and angiogenesis of cancer cells significantly decreased. This effect may be due to the reduction of growth factors provided by CAFs after miRNAs dysregulation. ConclusionThese results suggest miR-200c act as an effective tumor suppressor in many aspects of TNBC cancer development and can be regarded as a potential therapeutic tool for breast cancer in the future.