The fabrication of multifunctional materials that interface with living environments is a problem of great interest. A variety of structural design concepts have been integrated with functional materials to form biodevices and surfaces for health monitoring. In particular, approaches based on kirigami-inspired cuts can engineer flexibility in materials through the creation of patterned defects. Here, the fabrication of a biodegradable and biofunctional "silk kirigami" material is demonstrated. Mechanically flexible, free-standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. Using modeling techniques, it is shown how cuts can generate remarkable "self-shielding" leading to engineered elastic behavior and deformation. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed.Importantly, the silk-kirigami sheets are biocompatible, can serve as substrates for cell culture, and be proteolytically resorbed. The unique properties of silk kirigami suggest a host of applications as transient, "green", functional biointerfaces, and flexible bioelectronics.