2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) 2017
DOI: 10.1109/spices.2017.8091342
|View full text |Cite
|
Sign up to set email alerts
|

Microscope image processing for TB diagnosis using shape features and ellipse fitting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(3 citation statements)
references
References 11 publications
0
2
0
1
Order By: Relevance
“…They then resized the selected region to 20 × 20 and binary classified it with five layers of CNNs, achieving accuracy of 98.4% [ 23 , 24 ]. Reshma SR et al demonstrated that contour extraction, ellipse detection, and ellipse merging techniques could be used to count M. tuberculosis bacteria on 176 images with 91.5% accuracy [ 25 ]. Marios Zachariou et al demonstrated that ResNet50 can detect M. tuberculosis with 99.74% accuracy in 230 fluorescently stained microscope slides after segmentation by Cycle-Gan and classification of the extracted regions using ResNet, DenseNet, and SqueezeNet [ 26 ].…”
Section: Related Workmentioning
confidence: 99%
“…They then resized the selected region to 20 × 20 and binary classified it with five layers of CNNs, achieving accuracy of 98.4% [ 23 , 24 ]. Reshma SR et al demonstrated that contour extraction, ellipse detection, and ellipse merging techniques could be used to count M. tuberculosis bacteria on 176 images with 91.5% accuracy [ 25 ]. Marios Zachariou et al demonstrated that ResNet50 can detect M. tuberculosis with 99.74% accuracy in 230 fluorescently stained microscope slides after segmentation by Cycle-Gan and classification of the extracted regions using ResNet, DenseNet, and SqueezeNet [ 26 ].…”
Section: Related Workmentioning
confidence: 99%
“…Manual checking of Mycobacterium tuberculosis bacteria using a microscope also requires a lot of concentration of mind and body, for that it is necessary to develop an automatic detection system for Mycobacterium tuberculosis bacteria [10]. Mycobacterium tuberculosis detection results with automated procedures can improve accuracy and faster time [11].…”
Section: Introductionmentioning
confidence: 99%
“…Selain membutuhkan keterampilan analis laboratorium untuk membuat sediaan mikroskopis pada preparat, untuk membaca gambaran mikroskopis sediaan hapusan darah atau sputum juga dibutuhkan ketelitian mata untuk melihat berbagai bentuk parasit malaria atau bakteri tuberculosis di bawah lensa objektif mikroskop secara terus menerus [6,7]. Pembacaan sediaan pada preparat ini seringkali bersifat subjektif bagi masing-masing pemeriksa sehingga sering terdapat perbedaan pendapat pada pengambilan kesimpulan berapa jumlah keseluruhan parasit malaria ataupun bakteri tuberculosis pada satu sediaan mikroskopik [8,9]. Untuk mengurangi kesalahan akibat subjektivitas pembacaan sediaan mikroskopis, diperlukan seorang analis ahli yang berpengalaman membaca slide hapusan darah malaria atau sputum tuberculosis sebagai standar dan rujukan bagi para analis lainnya, yang disebut sebagai cross-checker [10].…”
unclassified