Biological
membranes are tricky to investigate. They are complex
in terms of molecular composition and structure, functional
over a wide range of time scales, and characterized
by nonequilibrium conditions. Because of all of these
features, simulations are a great technique to study biomembrane
behavior. A significant part of the functional processes
in biological membranes takes place at the molecular
level; thus computer simulations are the method of
choice to explore how their properties emerge from specific
molecular features and how the interplay among the numerous
molecules gives rise to function over spatial and
time scales larger than the molecular ones. In this
review, we focus on this broad theme. We discuss the current
state-of-the-art of biomembrane simulations that, until
now, have largely focused on a rather narrow picture
of the complexity of the membranes. Given this, we
also discuss the challenges that we should unravel in the
foreseeable future. Numerous features such as the actin-cytoskeleton
network, the glycocalyx network, and nonequilibrium
transport under ATP-driven conditions have so far
received very little attention; however, the potential
of simulations to solve them would be exceptionally high. A
major milestone for this research would be that one day
we could say that computer simulations genuinely research
biological membranes, not just lipid bilayers.