Understanding (super-)exchange coupling between local spins is an important task in theoretical chemistry and solid-state physics. We show that a Green's-function approach introduced earlier (Liechtenstein et al., J. Phys. F 1984, 14, L125; Steenbock et al., J. Chem. Theory Comput. 2015, 11, 5651) can be used for analyzing exchange coupling pathways in an automated fashion rather than by visual inspection of molecular orbitals. We demonstrate the capabilities of this approach by comparing it to previously published pathway analyses for hydroxy-bridged dinuclear copper complexes and an oxo-bridged dinuclear manganese complex, and employ it for discriminating between through-space and through-bond pathways in a naphthalene-bridged bisnickelocene complex. © 2017 Wiley Periodicals, Inc.