Molecular dynamics results are reported for the thermodynamic properties of supercritical water using examples of both rigid (TIP4P/2005) and flexible (TIP4P/2005f) transferable interaction potentials. Data are reported for pressure, isochoric and isobaric heat capacities, the thermal expansion coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, speed of sound, self-diffusion coefficient, viscosities, and thermal conductivity. Many of these properties have unusual behavior in the supercritical phase such as maximum and minimum values. The effectiveness of bond flexibility on predicting these properties is determined by comparing the results to experimental data. The influence of the intermolecular potential on these properties is both variable and state point dependent. In the vicinity of the critical density, the rigid and flexible potentials yield very different values for the compressibilities, heat capacities, and thermal expansion coefficient, whereas the self-diffusion coefficient, viscosities, and thermal conductivities are much less potential dependent. Although the introduction of bond flexibility is a computationally expedient way to improve the accuracy of an intermolecular potential, it can be counterproductive in some cases and it is not an adequate replacement for incorporating the effects of polarization.