The aim of the current study is to develop amorphous solid dispersion via hot melt extrusion technology to improve the solubility of a water-insoluble compound, felodipine. The solubility was dramatically increased by preparation of amorphous solid dispersions via hot-melt extrusion with an amphiphilic polymer, Soluplus®. Felodipine was found to be miscible with Soluplus® by calculating the solubility parameters. The solubility of felodipine within Soluplus® was determined to be in the range of 6.2–9.9% (w/w). Various techniques were applied to characterize the solid-state properties of the amorphous solid dispersions. These included Fourier Transform Infrared Spectroscopy and Raman spectroscopy to detect the formation of hydrogen bonding between the drug and the polymer. Scanning electron microscopy was performed to study the morphology of the solid dispersions. Among all the hot-melt extrudates, felodipine was found to be molecularly dispersed within the polymer matrix for the extrudates containing 10% drug, while few s mall crystals were detected in the 30 and 50% extrudates. In conclusion, solubility of felodipine was enhanced while a homogeneous solid dispersion was achieved for 10% drug loading.