Microbaroms are a continuous infrasonic signal in the 0.15 to 0.3 Hz band caused by the collision of oceanic surface waves of equal period. Such signals are often generated by large maritime storms. Current formulation of the generation mechanism predicts that the microbarom source location due to a large maritime storm in the open ocean is generally located several hundreds of kilometers from the eye of the storm. Assuming such a source location to be correct, propagation of the microbaroms along paths which pass near the storm center as well as those which propagate away from the storm structure have been examined using geometric acoustics. Microbarom propagation paths which pass near the storm center are refracted by the storm winds and are found to have back azimuths directed toward a virtual source around the storm center. Microbarom propagation paths which do not pass near the storm center are found to have back azimuths directed toward the actual source region. To validate these predictions, data from microbarom signals generated by hurricanes in the Atlantic Ocean have been collected along the east coast of the United States during the 2010 and 2011 Atlantic hurricane seasons. Data from several storm events are presented here for comparison with model predictions. In general, the observations are in agreement with the predictions of the propagation model.