The microstructure across a friction stir weld in aluminum alloy 2195 was analyzed to reveal the precipitation processes, grain evolution mechanisms, and crystallographic texture within that weld. The complex microhardness variations across the weld are explained by the observed precipitation sequence, in which the original precipitates coarsen and dissolve during welding, and are then replaced by different precipitates, which form during cooling. The grain development from the thermomechanically affected zone (TMAZ) into the weld nugget reveals that subgrains form within the TMAZ grains and develop increasing boundary misorientations through continuous dynamic recrystallization by subgrain rotation to eventually form the refined grains observed within the weld nugget. Within the weld nugget, a {112},110. texture is observed, corresponding to a high strain/high temperature shear strain component.