In this study, we investigated the effect of sintering temperature and nano boehmite additions on the phase composition, densification, and mechanical properties of porous cordierite ceramics. Ceramic samples were sintered at temperatures ranging from 1200 to 1400 • C. Carbon powder was used as a pore forming agent to improve the porosity of the ceramic structure. Nano boehmite and carbon additions significantly enhanced ceramic porosity and average pore size in sintered samples. The bulk density and apparent porosity of the sintered samples were found to be 0.96-1.53 g/cm 3 and 42.3%-65.6%, respectively. Sintered samples had cold crushing strengths of 1.5-14.3 MPa. The microstructure obtained by scanning electron microscopy was used to measure average pore size in sintered samples and was found to be 41.93 µm for stoichiometric composition (SC), 67.72 µm for SC and nano boehmite, and 102.98 µm for SC, nano boehmite, and carbon. The microstructure of the sintered samples revealed that the crystallinity of the in situ formed phases increased with the increase in nano boehmite additions.