In this paper, the effects of linear speed, rotational speed, and tool radius of the pin and shoulder are investigated on the material flow velocity in friction stir welds. To obtain the maximum material flow velocity by an analytical method, a suggested relation is introduced for the rotational speed and tool optimum radius. The derived relation is based on the assumption of a velocity field in the stirring region. Besides, the effect of the linear speed on material flow velocity is investigated based on continuity and momentum equations. Finally, by using the experimental method and checking the mechanical properties of the welded parts obtained with different rotational speed, linear speed, and tool dimensions, the proposed analytical model is validated. The results indicate that in the friction stir welding process, the significant component effect on the stirring process is generated through the tool pin radius size. Besides, increasing the material flow velocity in the boundary layer increases the yield and ultimate strength of welds. To achieve the high-quality welds, rotational speed and other tool dimensions must be selected considering the equation extracted from the analytical method. Also, to make the maximum life for the pin and its components in friction stir welding of high melting point metals such as steel alloys, the operation is adjusted at a lower linear speed to prevent the destruction of the tool and improve the quality of the joint.