Abstract. Aluminum high silicon alloys have concerned many researchers due to their high wear resistance, lightness, high corrosion resistance and low thermal expansion. Casting of high silicon Al-Si alloys (i.e. Si content greater than 17 wt.%) will generate large degrees of segregation and coarse microstructures due to the low rates of solidification. The problems associated with ingot casting of hypereutectic Al-Si alloys (i.e. segregation, coarse microstructures and porosity) may be overcome by rapid solidification processing such as spray, weld, and chill methods (e.g. melt spinning). The alloys under consideration here contain Al, Si, Zr, Cu, Mg, Fe and Ni. These alloys were produced by rapid solidification i.e. melt spinning. The aim of this paper is to characterise the hardness of material produced by rapid solidification at various stages of production. Several alloy variants were examined and relate the hardness to the microstructure. Piston A390 made by casting was examined for comparison.