An embrittlement correlation method is one of the most important techniques used to ensure the integrity of pressure vessel steels in nuclear power plants. In Japan, the embrittlement correlation method is being addressed in accordance with the Japan Electric Association Code (JEAC 4201), which was developed using actual measured data on the irradiation embrittlement of pressure vessel steels. In the present study, to develop more reliable methodologies, statistical arguments were made concerning the embrittlement data. With regard to a set of residual data defined in JEAC 4201 as a collection of differences between the measured and calculated ΔDBTT (ductileto-brittle transition temperature shift) values, a statistical relationship between the population and samples was found, and then, the sampling errors in the mean values of the residuals were identified as key for establishing a more reliable correlation method. Using this relationship, it was noted that when predicting the amount of irradiation embrittlement of pressure vessel steels in a particular plant using the JEAC 4201 correlation method, the deviation associated with sampling errors needed to be corrected. Based on this finding, a more appropriate interpretation was found for the so-called MC correction in JEAC 4201, and moreover, a new correction method was developed within the framework of Bayesian estimation. This new correction method will be useful for establishing further advanced methodologies to manage irradiation embrittlement using the probabilistic risk assessment approach.