The effect of extrusion temperature on the microstructures and mechanical properties of as-extruded Zn–22Al alloys was investigated in this study. With decrease of extrusion temperature from 350 to 200°C, the elongation of as-extruded Zn–22Al alloys increases remarkably at low strain rate and has no change at high strain rate, which implies that the Zn–22Al alloys extruded at lower temperature exhibit high-ductility behaviour. X-ray diffraction and electron back-scattered diffraction analysis demonstrated that the maximum elongation of Zn–22Al alloys extruded at the extrusion temperature of 200°C can be attributed to the elimination of the lamellar structure and the refinement in grain size of the Zn-rich phase.