A hydrogen-free nitriding method through double glow plasma metallurgy is exploited and a nitrided layer was formed on ZrTiAlV alloy. The nitrided layer was characterised through X-ray diffraction, optical microscopy, scanning electron microscopy and energy-dispersive spectroscopy techniques, as well as through Vickers hardness and friction and wear tests. Results showed that the nitrided layer is 580 µm thick, homogeneous and dense. It mainly consists of TiN, Ti2N and ZrN phases. The hardness of the nitrided layer on the surface of the ZrTiAlV alloy is nearly 2.5 times higher than that of the ZrTiAlV substrate. The friction coefficient and wear resistance of the alloy considerably improved after nitriding.