The FePt film above 10 nm critical lattice relaxation thickness was prepared and the ultrathin MgTiTaON layer was interleaved in between FePt film and the multilayer stack is FePt(6 nm)/[MgTiTaON(1 nm)/FePt(4 nm)]2. Next, the FePt films were co-sputtered with (Ag, C) segregants during deposition and the layer stacks is FePt(6 nm)(Ag, C)(x vol %)/[MgTiTaON (1 nm)/FePt(4 nm)(Ag, C) (x vol %)]2 (x = 0, 10, 20, 30, 40). After high temperature deposition at 470 °C, the granular FePt(Ag, C, MgTiTaON) film illustrated perpendicular magnetization and the out-of-plane coercivity (Hc) was increased with (Ag, C) segregants and the highest Hc is 18.3 kOe when x = 40. From cross-section images, the FePt layer are more continuous with 0 and 10 vol% (Ag, C) segregants and changed to an island structure when the (Ag, C) segregants increase to 20–40 vol %. The FePt grains were grown in separated islands in 20, 30 vol % (Ag, C) and changed to dense columnar-like morphology in 40 vol%. The second nucleated grains which contribute the in-plane magnetization are found in FePt (Ag, C) (40 vol %) film. The FePt islands are reached by inserting the ultrathin MgTiTaON layer and the island heights of FePt(Ag, C) (30, 40 vol %) are around 31–38 nm and the aspect ratios are 0.6–0.8.