In this study, we investigate four polyesters based on 2,5-furandicarboxylic acid and different diols including 1,2-ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,6-hexylene glycol. Poly(ethylene 2,5-furanoate), poly(propylene 2,5-furanoate), poly(butylene 2,5-furanoate), and poly(hexylene 2,5-furanoate) (PHF) were characterized by thermogravimetric analysis, X-ray diffraction, differential scanning calorimeter, and tensile tests. In addition, the influence of annealing polyesters on their thermal and mechanical properties was investigated. For these reasons samples for the tensile test were prepared by injection molding. The tensile properties of injection molded samples were compared with samples that were additionally annealed after injection molding. All studied polyesters after heating treatment showed multiple melting behavior. The increase in the degree of crystallinity significantly influenced also the mechanical properties of the samples. It was found that the length of the aliphatic chain and degree of crystallinity plays a major role in the final properties of furan-based polyesters.