Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combination of process parameters. A peculiar 3D helical material flow was highlighted through metallurgical observation of the specimens