For the next generation of lithium-ion batteries (LIBs), it is primary to seek high capacity and long-lifetime electrode materials. Li-excess disordered rock-salt structure (DRS) cathodes have gained much attention due to their high specific capacity. However, Li-excess can lead to a decrease in the structural stability of an electrode material. A new Li-rich DRS oxyfluorides, Li 1.23 Ni 0.3 Nb 0.3 Fe 0.16 O 0.85 F 0.15 (F 0.15 ) with a series amounts of LiNbO x (LN) coating (0, 5, 10, and 15 wt % denoted as F 0.15 -LN 0 , F 0.15 -LN 5 , F 0.15 -LN 10 , and F 0.15 -LN 15 , respectively), are successfully synthesized and evaluated as cathode materials in LIBs. Among them, F 0.15 -LN 10 exhibits the highest initial discharge specific capacity of 296.1 mAh g −1 (at a current density of 20 mA g −1 ) with the capacity retention rate of 14% higher than that of the uncoated F 0.15 after 80 cycles. Even at 300 mA g −1 , F 0.15 -LN 10 still delivers the highest discharge specific capacity of 130 mAh g −1 . After 20 cycles, the charge-transfer impedance of F 0.15 -LN 10 remained the smallest. The characterizations indicate that LN coating reduces the surface polarization of the cathode materials, slows the interfacial side reactions between the electrolyte and the electrode, and speeds up the Li + diffusion. These results demonstrate that LN coating is an effective strategy to improve the electrochemical performance.