The descaling roller is a significant component in steel rolling production. Under harsh service conditions, the descaling roller is subjected to the dynamic impact caused by high-pressure water erosion and a high-temperature billet descaling process for a long time. Under the harsh conditions of high temperature, strong wear, multi-cycle heat, force, flow, and multi-field strong coupling, the roller surface is prone to wear and corrosion failure, which affects the production cost and efficiency. Through plasma surfacing technology, a high-performance coating can be applied on the conventional metal surface to effectively improve its surface properties. It is important to carry out experimental research on the surface plasma surfacing of the descaling roller to prolong product life, improve product quality, and save cost. At present, the research on the 42CrMo scaler matrix plasma surfacing of nickel-based alloys with different WC contents is still lacking. In this paper, 70%NiCrBSi+30%WC powder and 40%NiCrBSi+60%WC powder were used as surfacing materials; plasma surfacing experiments were carried out on the 42CrMo matrix; and SEM, XRD, microhardness, friction and wear, and corrosion tests were carried out on the surfacing layer to evaluate the feasibility of preparing an ultra-high-hardness WC-particle-reinforced nickel-based alloy plasma surfacing layer on the descaling roller surface and to explore the WC hard phase dissolution behavior and complex secondary phase formation mechanism. The results show that γ(Fe/Ni), Fe-Ni, FeSi, Fe3C, and M7C3 are the main phases in the Ni/WC plasma surfacing layer. The diffusion and precipitation of elements occur in the molten pool, and complex secondary phases are formed in the surfacing layer. Compared with the 70%NiCrBSi+30%WC surfacing layer, the WC deposition phenomenon of the 40%NiCrBSi+60%WC surfacing layer has been significantly improved and has better hardness, wear resistance, and corrosion resistance. Based on the welding test, the correlation law between powder formulation, welding structure, and surfacing layer properties was revealed in this study, which lays a theoretical foundation for the preparation of high-performance coating on the descaling roller surface and has significant engineering application value and practical significance.